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Equal-channel angular pressing (ECAP) is a process
in which the ingot is subjected to a very severe plastic
strain without any change in the cross-sectional dimen-
sions. Numerous reports have confirmed that ECAP
is a promising technique for achieving grain refine-
ment in bulk materials. It was demonstrated [1] that
the as-processed materials have unusual physical and
mechanical properties. ECAP has been applied to dif-
ferent materials, but studies on fatigue properties of
ECAP materials were still scarce [2, 3]. In this paper,
low cycle fatigue properties of Al-Li-Cu-Mg-Zr alloy
processed by ECAP were investigated.

Al-Li-Cu-Mg-Zr alloy used in this investigation has
a composition (in wt%) of 2.55Li, 1.55Cu, 1.13Mg,
0.13Zr, 0.12Fe, 0.11Si, balance of Al. The samples
were pressed through the 90 ◦ intersecting channel and
were rotated through 180 ◦ about working axis between
4 subsequent passes. The pressing was conducted at a
temperature of 270 ◦C with the sample held in the die for
20 min to establish thermal equilibrium prior to press-
ing. The alloy underwent solution treatment at 530 ◦C
for half an hour before pressing. Fatigue specimens of
3 × 4 mm in cross-section were cut by spark cutting and
then mechanically polished to obtain a mirror-like sur-
face. Fully reversed tension-compression fatigue tests
were performed on MTS testing machine under total
strain amplitude control, using a clip-on axial exten-
someter. A strain amplitude range of 10−3–10−2 was
chosen. The plastic strain amplitudes �εp/2 at half
fatigue life Nf/2 were used to construct the Coffin-
Manson plot. Since the tensile testing at room tempera-
ture indicated that the effect of strain rate in the range of
10−3–10−1 s−1 on the flow stress of ECAP aluminum
alloys was not significant [4], all fatigue tests were con-
ducted at 1 Hz. Thin foils for transmission electron

Figure 1 TEM micrographs showing the microstructure of ECAP Al-Li-Cu-Mg-Zr alloy: (a) grains and subgrains and (b) δ′ precipitates (as arrows
show).

Figure 2 Cyclic stress response of ECAP Al-Li-Cu-Mg-Zr alloy.

Figure 3 Coffin-Manson plot of ECAP Al-Li-Cu-Mg-Zr alloy.

microscopy (TEM) were first sliced perpendicular to
the pressing axis, then mechanically thinned down to
about 60 µm thick and finally polished by a standard
twin-jet polishing method using an electrolyte of 25%
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Figure 4 SEM micrographs of fatigue fracture surface of ECAP Al-Li-Cu-Mg-Zr alloy: (a) �εp/2 = 5.5 × 10−3 and (b) �εp/2 = 8 × 10−4.

nitric acid and 75% methanol at −20 ◦C. TEM obser-
vation was carried out using a JEM 2000FX II micro-
scope operated at 200 kV. Fractographic observations
were performed using scanning electron microscopy
(SEM).

Extensive investigations on microstructural evolu-
tion in pure Al during ECAP were reported [5]. It has
been shown that a rather equi-axial grain structure can
be obtained in Al alloys through repetitive pressing.
Fig. 1a is a typical TEM micrograph showing the mi-
crostructure of ECAP sample. It mainly consists of near
equi-axial grains smaller than 1 µm. Some of the grain
boundaries in Fig. 1a are not very clear because the an-
gles are low. The dislocation density in the grains is not
very high. However, for most ECAP metals and cold
worked metals, the dislocation density is very high [3].
It might be reasonable to suppose that dynamic recov-
ery process happened during ECAP process. A few and
sparse δ′ precipitates can be seen in TEM micrograph
of ECAP samples (Fig. 1b).

Fig. 2 is the cyclic stress response of the ECAP Al-
Li-Cu-Mg-Zr alloy. The cyclic stress response shows
unusual characteristics different from most of other
ECAP materials. Most of ECAP materials cyclically
soften as cold worked materials [3], while the ECAP
samples in this experiment show a complicated cyclic
stress response. At strain amplitudes of �εp/2 =
5 × 10−4–2.6 × 10−3, samples soften rapidly at first
few cycles, and then harden continuously till failure.
The initial cyclic softening may be associated with the
reduction of dislocation density because of annihila-
tion of dislocations during cyclic straining. The subse-
quent cyclic hardening is supposed to be resulted from
a combination of increase in dislocation-precipitates
interaction and dislocation-dislocation interaction.
Furukawa et al. [6] have suggested that in Al-Li al-
loys when the precipitates have diameters less than
50 nm, dislocations shear the precipitates; when the
precipitates have diameters more than 50 nm, disloca-
tions by-pass the precipitates. The precipitates in the
ECAP sample have diameters about 100 nm (Fig. 1b),
dislocations by-pass the precipitates and form Orowan
loops around precipitates and the complex disloca-
tion interaction around precipitates leads to cyclic
hardening. At higher strain amplitude of �εp/2 =
5.5 × 10−3, ECAP samples soften continuously until
failure. One possible reason of continuous softening
is that some low angle and unstable grain bound-
aries were penetrated by dislocations at higher strain

amplitudes. Valiev et al. [7] indicated that grain bound-
aries in ECAP material are highly non-equilibrium
with high energy. When the applied plastic strain is
high, grain boundaries will easily be penetrated by dis-
locations and softening occurs. Further investigation
is required to attest the mechanisms of softening and
hardening.

Peak-aged Al-Li-Cu-Mg-Zr alloy exhibit non-ideal
plastic strain-fatigue life response with a slope change
in the Coffin-Manson plot [8]. One of the explanations
for the slope change in the Coffin-Manson plot is based
on a change from planar to homogeneous deformation
as a function of plastic strain amplitude, which is related
to the shearable δ′ precipitates [9]. However, as shown
in Fig. 3, ECAP Al-Li-Cu-Mg-Zr samples in the present
study show a straight line in the Coffin-Manson plot.
As mentioned above, the δ′ precipitates in ECAP sam-
ples are large and sparse, the dislocations by-pass the
precipitates. So whether the strain amplitude is higher
or lower, the deformation is homogeneous. As a re-
sult, the slope change in Coffin-Manson plot does not
appear and the ECAP samples show a straight line.
Fig. 4 shows the fatigue fracture surface of ECAP sam-
ples of �εp/2 = 5.5 × 10−3 and �εp/2 = 8 × 10−4.
There are no significant differences in fracture mode
between them and intergranular fracture is the main
fracture mode, which confirm that the dislocations by-
pass the precipitates and the deformation is homo-
geneous under either higher or lower plastic strain
amplitudes.

In summary, Al-Li-Cu-Mg-Zr alloy processed by
ECAP has some unusual fatigue properties.
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